1 stepped pressure equilibrium code : li00aa

Contents

stepped pressure equilibrium code : li00aa			1	
	1.1	outline	e]
		1.1.1	Lagrangian integration]
		1.1.2	discretization of trial curve]
		1.1.3	periodicity constraint]
		1.1.4	piecewise action integral	4
		1.1.5	conditions for extrema	6

1.1 outline

- 1. Lagrangian integration: locate high-order periodic field lines that approximate cantori.
- 2. Cantori form important barriers that can severely restrict field line transport and thus anisotropic heat transport [1].

1.1.1 Lagrangian integration

1. Magnetic field lines are curves that extremize the action integral [2],

$$S \equiv \int_{\mathcal{C}} \mathbf{A} \cdot d\mathbf{l},\tag{1}$$

where $\mathbf{A} = A_{\theta} \nabla \theta + A_z \nabla \zeta$ is the magnetic vector potential, and $d\mathbf{l} \equiv ds \, \mathbf{e_s} + d\theta \, \mathbf{e_{\theta}} + d\zeta \, \mathbf{e_{\zeta}}$ is a line segment along a 'trial' curve, C, which is described by $s(\zeta)$ and $\theta(\zeta)$ with ζ used to describe position along the curve.

2. In the following, it is assumed that the vector potential is given,

$$A_{\theta} \equiv A_{\theta}(s, \theta, \zeta) = \sum_{j} A_{\theta, j}(s) \cos(m_{j}\theta - n_{j}\zeta), \tag{2}$$

$$A_{\theta} \equiv A_{\zeta}(s, \theta, \zeta) = \sum_{j} A_{\zeta,j}(s) \cos(m_{j}\theta - n_{j}\zeta). \tag{3}$$

3. The computational task is to construct extremizing periodic curves.

1.1.2 discretization of trial curve

1. A practical discretization of \mathcal{C} is given [3]

$$\begin{cases}
s = s_i \\
\theta = \theta_{i-1} + \dot{\theta}_i \left(\zeta - \zeta_{i-1}\right)
\end{cases} \text{ for } \zeta \in [\zeta_{i-1}, \zeta_i], \tag{4}$$

where $\zeta_i \equiv i \, \Delta \zeta$, $\Delta \zeta \equiv \pi/N$ where N is a resolution parameter, and $\dot{\theta}_i \equiv (\theta_i - \theta_{i-1})/\Delta \zeta$.

2. The curve is now described by the s_i and the θ_i .

1.1.3 periodicity constraint

1. The periodicity constraint, $\theta(\zeta + 2\pi q) = \theta(\zeta) + 2\pi p$, is enforced by the constraint

$$\theta_{2qN} = \theta_0 + 2\pi p \tag{5}$$

2. The degrees of freedom in the curve are thus s_i for $i=1,\ldots,2qN$ and θ_i for $i=0,\ldots,2qN-1$.

1.1.4 piecewise action integral

1. Using this representation for the trial curve, the action integral becomes

$$S = \sum_{i=1}^{2qN} S_i(\theta_{i-1}, \theta_i, s_i)$$
(6)

where

$$S_i \equiv \int_{\zeta_{i-1}}^{\zeta_i} \mathbf{A} \cdot d\mathbf{l} \tag{7}$$

$$= \int_{\zeta_{i-1}}^{\zeta_i} \left(A_{\theta} \, \dot{\theta}_i + A_{\zeta} \right) d\zeta \tag{8}$$

$$= a_1 \Delta \zeta + \sum_j a_j \lambda_{j,i}, \tag{9}$$

where $a_j \equiv A_{\theta,j}(s_i)\dot{\theta}_i + A_{\zeta,j}(s_i)$, $\lambda_{j,i} \equiv [\sin(\alpha_{j,i}) - \sin(\alpha_{j,i-1})]/(m_j\dot{\theta}_i - n_j)$, and $\alpha_{j,i} \equiv (m_j\theta_i - n_j\zeta_i)$, and where the summation over j excludes the $(m_j, n_j) = (0, 0)$ component.

1.1.5 conditions for extrema

1. The action integral is extremized when

$$\frac{\partial S}{\partial s_i} = 0 \tag{10}$$

$$\frac{\partial S}{\partial \theta_i} = 0. ag{11}$$

2. Assume that the θ curve is given and the extremizing s curve is to be constructed. We must solve

$$\frac{\partial S}{\partial s_i} = \frac{\partial S_i}{\partial s_i} = a_1' \Delta \zeta + \sum_j a_j' \lambda_{j,i}. \tag{12}$$

- 3. Define $f(s_i) \equiv a_1' \Delta \zeta + \sum_j a_j' \lambda_{j,i}$. A one-dimensional Newton method can be employed to find $f(s_i + \delta s_i) \approx f(s_i) + f'(s_i) \delta s_i = 0$, where $f'(s_i) \equiv a_1'' \Delta \zeta + \sum_j a_j'' \lambda_{j,i}$.
- 4. Note that the solution, s_i , depends only on θ_{i-1} and θ_i , so that $s_i = s_i(\theta_{i-1}, \theta_i)$. The action integral now becomes a function only of the θ_i .

li00aa.h last modified on 2012-09-15;

- [1] S. R. Hudson and J. Breslau. Temperature contours and ghost-surfaces for chaotic magnetic fields. Phys. Rev. Lett., 100(9):095001, 2008.
- [2] J. R. Cary and R. G. Littlejohn. Noncanonical Hamiltonian mechanics and its application to magnetic field line flow. Ann. Phys., 151:1, 1983.
- [3] S. R. Hudson. Calculation of cantori for Hamiltonian flows. Phys. Rev. E., 74:056203, 2006.